GENERAL DEPARTMENT

GOVERNMENT ENGINEERING COLLEGE, DAHOD

B.E. 1^{st} SEM (All Branches) - ODD SEMESTER: 2025-26

Subject: Mathematics-1 (BE01R00041)

Syllabus of Mid Semester Examination

Max. Marks: 30 Time: 90 minutes

1	Module 1: Basic Calculus: Evaluation of improper integrals of Type-I and Type-II, Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions	CO1		
2	Module 2: Single-variable Calculus (Differentiation): Taylor's and Maclaurin's theorem for a function of one variable, Taylor's and Maclaurin's series of a function using statement of the theorems; Extreme values of functions; Indeterminate forms and L' Hospital's rule.	CO2		
3	Module 4: Multivariable Calculus (Differentiation): Limit, Continuity and Differentiation for function of two or more variables, total derivative, gradient, directional derivatives; Tangent plane and Normal line to the surface $f(x,y,z)=c$; Extreme values for function of two variables (Maxima, minima and saddle points); Method of Lagrange multipliers.	CO4		
	 Reference Books: G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010. AICTE's Prescribed Textbook: Mathematics-I (Calculus & Linear Algebra), Khanna Book Publishing Co. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010. Open source software and website: 			
	 MIT Open Courseware (https://ocw.mit.edu/search/?s=department_course_numbers.sort_coursenum) NPTEL Open Courseware (https://nptel.ac.in/) 			

CO-1	To apply differential and integral calculus to improper integrals. Apart from some other				
	applications they will have a basic understanding of Beta and Gamma functions.				
CO-3	The fallouts of Taylor's and Maclaurin's Theorem that is fundamental to application of analysis				
	to Engineering problems.				
CO-5	To deal with functions of several variables that is essential in most branches of Engineering.				

CO	CO1	CO2	CO4	Total
Weightage	10	10	10	30

Bloom's Taxonomy level	R	U	A	N	E	С
As per GTU	9	15	6	0	0	0
Actual	-	-	-	0	0	0